show more suggested works, and break ties randomly instead of first-come-first-served
This commit is contained in:
parent
4e75017df6
commit
f66fa8138d
|
@ -7,6 +7,7 @@ from io import BytesIO
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
import os
|
import os
|
||||||
from os.path import relpath, splitext
|
from os.path import relpath, splitext
|
||||||
|
import random
|
||||||
import re
|
import re
|
||||||
import readline
|
import readline
|
||||||
import shutil
|
import shutil
|
||||||
|
@ -91,6 +92,8 @@ MULTIPART_RAR_TAIL_REGEX = re.compile(r'^(.+)\.part0*([^1]|[^0].+)\.rar$', re.I)
|
||||||
PDF_REFERENCED_IMAGE_REGEX = re.compile(r'(^|(?<=\s))/(?P<ref_name>\S+)\s+Do($|(?=\s))')
|
PDF_REFERENCED_IMAGE_REGEX = re.compile(r'(^|(?<=\s))/(?P<ref_name>\S+)\s+Do($|(?=\s))')
|
||||||
PDF_INLINE_IMAGE_REGEX = re.compile(r'(^|\s)(BI|ID|EI)($|\s)')
|
PDF_INLINE_IMAGE_REGEX = re.compile(r'(^|\s)(BI|ID|EI)($|\s)')
|
||||||
|
|
||||||
|
SUGGESTED_WORKS_COUNT = 10
|
||||||
|
|
||||||
debug_mode = False
|
debug_mode = False
|
||||||
def debug(s):
|
def debug(s):
|
||||||
if debug_mode:
|
if debug_mode:
|
||||||
|
@ -1012,18 +1015,23 @@ def similarity(a, b):
|
||||||
memoized_similarities[(shorter, longer)] = result
|
memoized_similarities[(shorter, longer)] = result
|
||||||
return result
|
return result
|
||||||
|
|
||||||
def top(items, n, key):
|
def top(items, n, key, overflow=0):
|
||||||
winners = []
|
winners = []
|
||||||
for item in items:
|
for item in items:
|
||||||
score = key(item)
|
score = key(item)
|
||||||
if len(winners) < n or score > winners[-1][1]:
|
if len(winners) < n or score >= winners[-1][1]:
|
||||||
for i in range(len(winners) + 1):
|
for i in range(len(winners) + 1):
|
||||||
if i == len(winners) or score > winners[i][1]:
|
if i == len(winners) or score >= winners[i][1]:
|
||||||
winners.insert(i, (item, score))
|
winners.insert(i, (item, score))
|
||||||
break
|
break
|
||||||
while len(winners) > n:
|
while len(winners) > n and winners[-1][1] < winners[n-1][1]:
|
||||||
winners.pop()
|
winners.pop()
|
||||||
return [item for (item, score) in winners]
|
|
||||||
|
# shuffle followed by stable sort to randomly shuffle within each score tier
|
||||||
|
random.shuffle(winners)
|
||||||
|
winners.sort(key=lambda w: w[1], reverse=True)
|
||||||
|
|
||||||
|
return [item for (item, score) in winners[:n+overflow]]
|
||||||
|
|
||||||
def generate(args):
|
def generate(args):
|
||||||
jenv = Environment(
|
jenv = Environment(
|
||||||
|
@ -1080,7 +1088,7 @@ def generate(args):
|
||||||
if work['series'] and work['series'] == other_work['series']:
|
if work['series'] and work['series'] == other_work['series']:
|
||||||
return -1
|
return -1
|
||||||
return similarity(work['title'], other_work['title'])
|
return similarity(work['title'], other_work['title'])
|
||||||
suggested = top(works, 6, suggestion_priority)
|
suggested = top(works, SUGGESTED_WORKS_COUNT, suggestion_priority)
|
||||||
|
|
||||||
work_dir = site_dir / 'works' / work['id']
|
work_dir = site_dir / 'works' / work['id']
|
||||||
viewer_dir = work_dir / 'view'
|
viewer_dir = work_dir / 'view'
|
||||||
|
|
Loading…
Reference in a new issue