Compare commits
2 commits
c26300d752
...
06d782e77a
Author | SHA1 | Date | |
---|---|---|---|
xenofem | 06d782e77a | ||
xenofem | 8e32c7cbca |
|
@ -531,6 +531,7 @@ class Collator:
|
|||
return split_attempt
|
||||
|
||||
if all(src.is_file() and is_image(src) for src in srcs):
|
||||
debug('Attempting to detect ordering for image files')
|
||||
ordering = complete_prefix_number_ordering(srcs)
|
||||
if not ordering and self.args.sort:
|
||||
ordering = srcs.copy()
|
||||
|
@ -542,6 +543,11 @@ class Collator:
|
|||
else:
|
||||
return None
|
||||
|
||||
debug('Unable to collate available file types:')
|
||||
debug(f'Images: {[src for src in srcs if src.is_file() and is_image(src)]}')
|
||||
debug(f'PDFs: {[src for src in srcs if src.is_file() and is_pdf(src)]}')
|
||||
debug(f'Directories: {[src for src in srcs if src.is_dir()]}')
|
||||
debug(f'Unknown files: {[src for src in srcs if src.is_file() and not is_image(src) and not is_pdf(src)]}')
|
||||
return None
|
||||
|
||||
def link_pdf(self, src):
|
||||
|
@ -590,6 +596,8 @@ class Collator:
|
|||
if sum(1 for l in [early_srcs, middle_srcs, late_srcs] if l) <= 1:
|
||||
return False
|
||||
|
||||
debug(f'Splitting sources based on regex: {[early_srcs, middle_srcs, late_srcs]}')
|
||||
|
||||
early_page_collation = self.collate_from_paths(early_srcs)
|
||||
if early_page_collation is None:
|
||||
return None
|
||||
|
@ -671,6 +679,7 @@ class Collator:
|
|||
if not all(any(lang.search(nname(src)) for lang in LANGUAGE_REGEXES.values()) for src in srcs):
|
||||
return False
|
||||
|
||||
debug('Detected multiple language options, selecting preferred language')
|
||||
srcs_matching_language = [src for src in srcs if LANGUAGE_REGEXES[self.args.locale].search(nname(src))]
|
||||
if len(srcs_matching_language) == len(srcs) or len(srcs_matching_language) == 0:
|
||||
return False
|
||||
|
@ -1141,7 +1150,7 @@ def copy_recursive(src, dest):
|
|||
|
||||
|
||||
memoized_similarities = {}
|
||||
def similarity(a, b, cache_cur=None):
|
||||
def string_similarity(a, b):
|
||||
if len(a) < len(b) or (len(a) == len(b) and a < b):
|
||||
shorter = a
|
||||
longer = b
|
||||
|
@ -1154,43 +1163,49 @@ def similarity(a, b, cache_cur=None):
|
|||
if (shorter, longer) in memoized_similarities:
|
||||
return memoized_similarities[(shorter, longer)]
|
||||
|
||||
if cache_cur and (cached := cache_cur.execute("SELECT similarity FROM similarities WHERE shorter = ? AND longer = ?", (shorter, longer)).fetchone()) is not None:
|
||||
result = cached[0]
|
||||
else:
|
||||
options = [similarity(shorter[1:], longer)]
|
||||
options = [string_similarity(shorter[1:], longer)]
|
||||
for i in range(1, len(shorter)+1):
|
||||
match_idx = longer.find(shorter[:i])
|
||||
if match_idx == -1:
|
||||
break
|
||||
options.append(i*i + similarity(shorter[i:], longer[match_idx+i:]))
|
||||
options.append(i*i + string_similarity(shorter[i:], longer[match_idx+i:]))
|
||||
result = max(options)
|
||||
|
||||
if cache_cur:
|
||||
cache_cur.execute(
|
||||
"INSERT INTO similarities(shorter, longer, similarity) VALUES(?, ?, ?)",
|
||||
(shorter, longer, result),
|
||||
)
|
||||
|
||||
memoized_similarities[(shorter, longer)] = result
|
||||
return result
|
||||
|
||||
def top(items, n, key, overflow=0):
|
||||
winners = []
|
||||
for item in items:
|
||||
score = key(item)
|
||||
if len(winners) < n or score >= winners[-1][1]:
|
||||
for i in range(len(winners) + 1):
|
||||
if i == len(winners) or score >= winners[i][1]:
|
||||
winners.insert(i, (item, score))
|
||||
class TopScoreList:
|
||||
def __init__(self, limit):
|
||||
self.limit = limit
|
||||
self.items_with_scores = []
|
||||
self.randomized = True
|
||||
|
||||
def insert(self, item, score):
|
||||
if len(self.items_with_scores) >= self.limit and score < self.items_with_scores[-1][1]:
|
||||
return [item]
|
||||
|
||||
self.randomized = False
|
||||
for i in range(len(self.items_with_scores) + 1):
|
||||
if i == len(self.items_with_scores) or score >= self.items_with_scores[i][1]:
|
||||
self.items_with_scores.insert(i, (item, score))
|
||||
break
|
||||
while len(winners) > n and winners[-1][1] < winners[n-1][1]:
|
||||
winners.pop()
|
||||
removed_items = []
|
||||
while len(self.items_with_scores) > self.limit and self.items_with_scores[-1][1] < self.items_with_scores[self.limit-1][1]:
|
||||
removed_items.append(self.items_with_scores.pop()[0])
|
||||
return removed_items
|
||||
|
||||
def _randomize(self):
|
||||
if self.randomized:
|
||||
return
|
||||
|
||||
# shuffle followed by stable sort to randomly shuffle within each score tier
|
||||
random.shuffle(winners)
|
||||
winners.sort(key=lambda w: w[1], reverse=True)
|
||||
random.shuffle(self.items_with_scores)
|
||||
self.items_with_scores.sort(key=lambda i: i[1], reverse=True)
|
||||
self.randomized = True
|
||||
|
||||
return [item for (item, score) in winners[:n+overflow]]
|
||||
def __iter__(self):
|
||||
self._randomize()
|
||||
return (item for (item, _) in self.items_with_scores[:self.limit])
|
||||
|
||||
def generate(args):
|
||||
debug('loading templates')
|
||||
|
@ -1210,17 +1225,21 @@ def generate(args):
|
|||
cur = con.cursor()
|
||||
debug('main database open')
|
||||
|
||||
debug('opening cache database')
|
||||
debug('opening suggestion cache database')
|
||||
cache_con = sqlite3.connect(args.destdir / 'cache.db')
|
||||
cache_cur = cache_con.cursor()
|
||||
cache_cur.execute("CREATE TABLE IF NOT EXISTS similarities(shorter TEXT, longer TEXT, similarity INT, PRIMARY KEY(shorter, longer))")
|
||||
debug('cache database open')
|
||||
cache_cur.execute("CREATE TABLE IF NOT EXISTS suggestions(work TEXT, suggested TEXT, similarity INT, PRIMARY KEY(work, suggested))")
|
||||
debug('suggestion cache database open')
|
||||
cached_suggestions = {}
|
||||
for (work, suggested, similarity) in cache_cur.execute('SELECT work, suggested, similarity FROM suggestions'):
|
||||
cached_suggestions.setdefault(work, TopScoreList(SUGGESTED_WORKS_COUNT)).insert(suggested, similarity)
|
||||
debug('cached suggestions loaded')
|
||||
|
||||
site_dir = args.destdir / 'site'
|
||||
|
||||
collated_work_ids = {p.name for p in (site_dir / 'images').iterdir()}
|
||||
|
||||
works = []
|
||||
works = {}
|
||||
debug('checking thumbnail files')
|
||||
thumbnail_files = {f.stem: f for f in (site_dir / 'thumbnails').iterdir()}
|
||||
debug(f'{len(thumbnail_files)} thumbnail files found')
|
||||
|
@ -1247,30 +1266,55 @@ def generate(args):
|
|||
'thumbnail_path': thumbnail_path,
|
||||
'images': images,
|
||||
}
|
||||
works.append(work)
|
||||
works[work_id] = work
|
||||
|
||||
print(f'{ANSI_LINECLEAR}{idx+1} database entries read...', end='')
|
||||
print()
|
||||
|
||||
for (idx, work) in enumerate(works):
|
||||
def suggestion_priority(other_work):
|
||||
for work in works.values():
|
||||
if work['id'] in cached_suggestions:
|
||||
continue
|
||||
debug(f'Computing suggestions for new work {work["title"]}')
|
||||
cached_suggestions[work['id']] = TopScoreList(SUGGESTED_WORKS_COUNT)
|
||||
for other_work in works.values():
|
||||
if other_work is work:
|
||||
return -2
|
||||
continue
|
||||
if work['series'] and work['series'] == other_work['series']:
|
||||
return -1
|
||||
return similarity(work['title'], other_work['title'], cache_cur)
|
||||
suggested = top(works, SUGGESTED_WORKS_COUNT, suggestion_priority)
|
||||
continue
|
||||
if other_work['id'] not in cached_suggestions:
|
||||
continue # we'll get to it later
|
||||
|
||||
similarity = string_similarity(work['title'], other_work['title'])
|
||||
cached_suggestions[work['id']].insert(other_work['id'], similarity)
|
||||
removed = cached_suggestions[other_work['id']].insert(work['id'], similarity)
|
||||
if removed != [work['id']]:
|
||||
cache_cur.executemany(
|
||||
'DELETE FROM suggestions WHERE work = :work AND suggested = :suggested',
|
||||
[{ "work": other_work['id'], "suggested": item } for item in removed],
|
||||
)
|
||||
cache_cur.execute(
|
||||
'INSERT INTO suggestions(work, suggested, similarity) VALUES(:work, :suggested, :similarity)',
|
||||
{ "work": other_work['id'], "suggested": work['id'], "similarity": similarity },
|
||||
)
|
||||
cache_cur.executemany(
|
||||
'INSERT INTO suggestions(work, suggested, similarity) VALUES(:work, :suggested, :similarity)',
|
||||
[{ "work": work['id'], "suggested": suggested, "similarity": similarity } for (suggested, similarity) in cached_suggestions[work['id']].items_with_scores],
|
||||
)
|
||||
cache_con.commit()
|
||||
|
||||
for (idx, work) in enumerate(works.values()):
|
||||
work_dir = site_dir / 'works' / work['id']
|
||||
viewer_dir = work_dir / 'view'
|
||||
viewer_dir.mkdir(parents=True, exist_ok=True)
|
||||
with open(work_dir / 'index.html', 'w') as f:
|
||||
f.write(work_template.render(depth=2, work=work, title=work['title'], suggested=suggested))
|
||||
f.write(work_template.render(
|
||||
depth=2, work=work, title=work['title'],
|
||||
suggested=[works[suggested] for suggested in cached_suggestions[work['id']]],
|
||||
))
|
||||
with open(viewer_dir / 'index.html', 'w') as f:
|
||||
f.write(viewer_template.render(depth=3, work=work, title=work['title']))
|
||||
|
||||
count_progress(idx, len(works), 'works processed')
|
||||
cache_con.commit()
|
||||
|
||||
uca = pyuca.Collator().sort_key
|
||||
def make_categorization(categorization, query, work_filter, work_style_cards=False):
|
||||
|
@ -1279,7 +1323,7 @@ def generate(args):
|
|||
cats = sorted((cat for (cat,) in cur.execute(query)), key=uca)
|
||||
cat_samples = {}
|
||||
for (idx, cat) in enumerate(cats):
|
||||
cat_works = list(filter(work_filter(cat), works))
|
||||
cat_works = list(filter(work_filter(cat), works.values()))
|
||||
cat_samples[cat] = cat_works[0] if len(cat_works) > 0 else None
|
||||
|
||||
safeish_cat = cat.replace('/', ' ')
|
||||
|
@ -1333,7 +1377,7 @@ def generate(args):
|
|||
|
||||
debug('writing index page')
|
||||
with open(site_dir / 'index.html', 'w') as f:
|
||||
f.write(index_template.render(depth=0, works=works))
|
||||
f.write(index_template.render(depth=0, works=list(works.values())))
|
||||
debug('index page written')
|
||||
|
||||
debug('closing cache database')
|
||||
|
|
Loading…
Reference in a new issue