python-zulip-api/bots/summarize_stream.py

84 lines
2.8 KiB
Python
Raw Normal View History

from __future__ import print_function
from typing import Any, Dict, List
# This is hacky code to analyze data on our support stream. The main
# reusable bits are get_recent_messages and get_words.
import zulip
import re
import collections
2016-09-10 15:23:44 -04:00
def get_recent_messages(client, narrow_str, count=100):
# type: (zulip.Client, str, int) -> List[Dict[str, Any]]
narrow = [word.split(':') for word in narrow_str.split()]
req = {
'narrow': narrow,
'num_before': count,
'num_after': 0,
'anchor': 1000000000,
'apply_markdown': False
}
old_messages = client.do_api_query(req, zulip.API_VERSTRING + 'messages', method='GET')
if 'messages' not in old_messages:
return []
return old_messages['messages']
def get_words(content):
2016-09-10 15:23:44 -04:00
# type: (str) -> List[str]
regex = "[A-Z]{2,}(?![a-z])|[A-Z][a-z]+(?=[A-Z])|[\'\w\-]+"
words = re.findall(regex, content, re.M)
words = [w.lower() for w in words]
# words = [w.rstrip('s') for w in words]
return words
def analyze_messages(msgs, word_count, email_count):
2016-09-10 15:23:44 -04:00
# type: (List[Dict[str, Any]], Dict[str, int], Dict[str, int]) -> None
for msg in msgs:
if False:
if ' ack' in msg['content']:
name = msg['sender_full_name'].split()[0]
print('ACK', name)
m = re.search('ticket (Z....).*email: (\S+).*~~~(.*)', msg['content'], re.M | re.S)
if m:
ticket, email, req = m.groups()
words = get_words(req)
for word in words:
word_count[word] += 1
email_count[email] += 1
if False:
print()
for k, v in msg.items():
print('%-20s: %s' % (k, v))
def generate_support_stats():
2016-09-10 15:23:44 -04:00
# type: () -> None
client = zulip.Client()
narrow = 'stream:support'
count = 2000
msgs = get_recent_messages(client, narrow, count)
2016-02-05 14:27:19 -05:00
msgs_by_topic = collections.defaultdict(list) # type: Dict[str, List[Dict[str, Any]]]
for msg in msgs:
topic = msg['subject']
msgs_by_topic[topic].append(msg)
2016-02-05 14:27:19 -05:00
word_count = collections.defaultdict(int) # type: Dict[str, int]
email_count = collections.defaultdict(int) # type: Dict[str, int]
if False:
for topic in msgs_by_topic:
msgs = msgs_by_topic[topic]
analyze_messages(msgs, word_count, email_count)
if True:
words = [w for w in word_count.keys() if word_count[w] >= 10 and len(w) >= 5]
words = sorted(words, key=lambda w: word_count[w], reverse=True)
for word in words:
print(word, word_count[word])
if False:
emails = sorted(list(email_count.keys()),
key=lambda w: email_count[w], reverse=True)
for email in emails:
print(email, email_count[email])
generate_support_stats()